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Abstract. Rapid growth of the amount of influenza genome sequence
data requires enhancing exploratory analysis tools. Results of the pre-
liminary analysis should be represented in an easy-to-comprehend form
and allow convenient manipulation of the data.

We developed an adaptive approach to visualization of large sequence
datasets on the web. A dataset is presented in an aggregated tree form
with special representation of sub-scale details. The representation is
calculated from the full phylogenetic tree and the amount of available
screen space. Metadata, such as distribution over seasons or geographic
locations, are aggregated/refined consistently with the tree. The user can
interactively request further refinement or aggregation for different parts
of the tree.

The technique is implemented in Javascript on client site. It is a part
of the new AJAX-based implementation of the NCBI Influenza Virus
Resource.

Keywords: visualization, adaptive, sequence, tree, phylogenetic, virus,
influenza, JavaScript, AJAX.

1 Introduction

The number of influenza virus sequences in the public database more than dou-
bled from the beginning of 2005, thanks to collaborative genome sequencing
efforts by the National Institute of Allergy and Infectious Diseases ([1], [2]), St.
Jude Children’s Research Hospital, the Centers for Disease Control and Pre-
vention, and many others. This requires more sophisticated preliminary analy-
sis tools to be provided to users. Datasets should be represented in an easily
comprehendible and adjustable visual form that provides a convenient way of
manipulating the data.

The visualization approaches used in several releases of the NCBI Influenza
Virus Resource ([3],[4]) were based on sequence-level representation of the data.
They provided a convenient interface for viewing the entire dataset and manipu-
lating individual sequences: viewing multiple sequence alignments and trees built

I. Mandoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 192–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Adaptive Resolution Tree Visualization 193

Fig. 1. Multiple sequence alignment

using different algorithms [5] (typical web visualizations of a multiple sequence
alignment and a phylogenetic tree are shown in Figures 1, 2). However, the ap-
proach based on manipulating individual sequences is not very useful for large
datasets. For example, detailed schematic representation of a huge dataset with
a fine level of detail, with all information included regardless of relevance, is very
difficult to comprehend ([6], [7]). There are many influenza virus sequences that
are identical or highly similar to each other. Most of the time, it is not necessary
to show all such sequences in the analysis. Also, operating the data manually
sequence-by-sequence is highly inefficient and time-consuming for the user. In
addition, the user needs guidance to scan through a complex set of data provided
not only at the level of individual sequences but also groups of sequences, depend-
ing on the task. It is preferable to structure the dataset and provide meaningful
aggregated representations with the ability to adapt the aggregation level.

Several systems have been developed to support interactive browsing of large
trees with the ability to focus ([8], [9], [10], [11]). The issues of scalability, perfor-
mance and robustness of tree visualization have been also addressed [12]. In addi-
tion, innovative approaches to visualization of geographic information have been
developed [13]. Modern cartographical systems widely used in mobile devices
provide adaptively-coarsened visual representations of maps. Such representa-
tion changes in real time to provide the best visualization suiting a specific task
(driving, flying). In each of these cases, the information helpful for performing
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Fig. 2. An full-resolution tree built for 380 HA protein sequences for Influenza A
H3N2 viruses extracted from human hosts during a 20-year period (1968-1998), using
the neighbor-joining method. The top of the tree is enlarged in the small window.

the task is provided. The knowledge is represented in an easy-to-comprehend
form and the amount of information is limited in a way that a human (driver)
can process it and make a reasonable decision in real time.

We propose an adaptive approach to visualize the dataset in an aggregated
form adapted to the user’s screen, allowing the user to interactively refine or
aggregate visualization of different parts of the dataset, depending on the task
and need for details. The essential parts of our technique are:
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– Representation of a large tree by a smaller tree having aggregated groups as
terminal nodes;

– Placing a specially constructed tree to show the structure of each aggregated
group at the sub-scale resolution level.

– Creating metadata description for each aggregated group from the original
metadata.

Sub-scale resolution representation. When a tree for aggregated group is cal-
culated, it can be shown as a phylogenetic tree with groups shown as named
terminal nodes. However, this representation can be refined within the same
screen space. Since the height of the font used in annotation is usually several
pixels (typically, 10-12 px), available vertical space can be used to show, in some
form, the structure of the subtree corresponding to the aggregated group.

An example of aggregated tree is shown in Figure 3 (the dataset is the same
as in Figure 2).

Initial tree visualization, built from the full tree taking into account avail-
able screen space, can be changed by the user interactively through requesting
refinement for some aggregated groups and further aggregating subtrees that
are not of interest to the user. The user can also change the tree annotation

Fig. 3. An aggregated tree built for 380 HA protein sequences for Influenza A H3N2
viruses extracted from human hosts during 20-year period 1968-1998 (the full tree was
calculated using the neighbor-joining method). The dataset is the same as in Figure 2.
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by indicating special interest for particular influenza, subtypes, years, seasons
or geographic locations. This will cause sequences of interest to be recolored at
the sequence-level representation, and annotation of aggregated groups to be
changed and recolored, to reflect information requested by the user.

While full tree is built on the server, its adaptive visualization is built and
can be interactively changed on the client-machine using a JavaScript imple-
mentation. It is embedded in the new version of our analysis tools based on the
AJAX technology [14]. Since we specifically aim work within a browser on client
machine, we are limited to graphic functionality available in HTML1.

2 Methods

Data Structures. The tree is implemented using an array of nodes, with each
node containing array indexes of its parent node and children. We defined the
following Javascript objects:

Tree - object containing an array of Node objects as its nodes property, root
index in the node array as its rootId property, and some auxiliary
objects. In the process of adaptive aggregation, objectSubtreeInfo is
added.

Node - an object having the following properties:

parentId - an index of the parent node in the array nodes, or
-1 for root;

children - an array containing indices of children nodes in
nodes array;

branchLength - length of the branch going to the parent node;
metadata - node metadata (name, subtype, date of extraction,

country, etc.);
presentation - information on visual representation;
status - an integer value, initially equal to 0. Value 1 is set of

of corresponding subtree should be represented
in the aggregated form.

Object SubtreeInfo has the following fields:

lengthMin - minimal distance from the root of the subtree to a leaf;
lengthMax - maximal distance from a leaf of the subtree to a leaf;
diam - diameter of the subtree.

Distances used in calculations of lengthMin, lengthMin, and lengthMin are tree
distances, i.e. lengths of shortest paths.

Calculating subtree information for original tree. SubtreeInfo objects,
containing minimal and maximal distances from the subtree root to a leaf and

1 Non-linear two-dimensional transformations requiring rich graphical functionality
are the core of the approaches like [10].
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diameter of the subtree are calculated for tree nodes in a bottom-to-top manner
using formulas:

lmin
i = min{lj + lmin

j |j ∈ Ωi}; (1)

lmax
i = max{lj + lmax

j |j ∈ Ωi}; (2)

di = max (max{dj|j ∈ Ωi}, max{dj + dk + lj + jk|j, k ∈ Ωi, j �= k}) ; (3)

where

Ωi is the subtree having node i as its root,
li is the branch length from node i to its parent,
lmin
i is minimal tree distance from node i to a leaf in subtree Ωi,
lmax
i is maximal tree distance from node i to a leaf in subtree Ωi,
di is diameter of subtree Ωi.

Building an aggregated tree. In order to control visualization, integer status
variable Tree.nodes[i].status is assigned to each node i of the full tree. It
has the following meaning:

If status = 0, the node is treated as a usual tree node.
If status = 1, the node is treated as an aggregated group:

- The name of the aggregated group is created and shown;
- The aggregated group is shown graphically using sub-scale visualization.

In the beginning, we assign root status to 1, i.e. consider the tree as aggregated
in one group. We start disaggregate nodes, from the child of the root that has
largest diameter of the corresponding subtree, and disaggregate while screen
space allows (Technically, desegregating node i means setting its status to 0 and
setting status of its children to 1).

To control the order of node disaggregation, we use auxiliary array Θ, where
indices of the candidate nodes for disaggregation sorted by non-increasing diam-
eters are placed:

dik
≥ dim for any k < m, 0 ≤ k, m < |Θ| (4)

Technically, array Θ is included in the Tree object as Tree.leafArray.nodeIds.
It is easy to see that

di0 = max{dik
| 0 ≤ k < |Θ|} (5)

i.e., the node in the front of the array has the maximal diameter of the subtree.
The disaggregation algorithm is described as follows. The number of groups

in the aggregated tree is denoted as N , the maximal allowed number of groups
as Nmax, and the set of children of node i as Λi.
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Algorithm 1.
Set root status to 1;
Include root in Θ;
Set N to 1.
While( |Θ| > 0 and N + max(|Λi0 | − 1, 0) ≤ Nmax){

Set status of node i0 to 0;
Delete i0 from Θ;
If( Λi0 �= ∅ ){

For ( all k ∈ Λi0 ){
Include k in Θ;
Set status of node k to 1;

}
Set N ← N + |Λi0 | − 1.

}
}

The new indices k are included in Θ with order preserved2 (4).

Drawing sub-scale resolution representation. We represent a subtree on
sub-resolution level (e.g., in the space approximately equal to the font height)
as follows:

– Start from a tree containing only one element, corresponding to the root of
the sub-tree and perform several steps of disaggregation;

– Represent each non-resolved subtree by two leaves: closest to the root and
most distant (see Fig. 4).

Figure 5 illustrates transformation of a subtree in its sub-scale resolution
representation. The algorithm for building a subscale-resolution tree is similar
to Algorithm 1.

Aggregating Metadata. When aggregated groups of sequences are created,
we can create abstracted description of the group to annotate the tree. We can
summarize the group using the following descriptive characteristics:

– type;
– subtype,
– year of extraction;
– season of extraction;
– geographical location (country, continent).

However, abstracting or summarizing less formal descriptions, such as strain
name, seems to be more challenging.

2 In our current implementation, a binary search is performed to find insertion posi-
tion and JavaScript method Array::splice is used for inserting an element in the
JavaScript array.
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Fig. 4. Representation of of an unresolved subtree by a tree with two leaves, showing
the leaf closest to the root and the leaf most distant from the root, in the original
subtree

Fig. 5. A subtree (top) and its sub-scale resolution representation (bottom)

JavaScript Implementation. The JavaScript library implementing the adap-
tive visualization of the tree consists of two layers. The first contains objects
and methods to calculate the tree for aggregated groups and trees for sub-level
resolution, as well as metadata. The second contains objects and methods for
actual rendering; it creates and changes HTML objects and places them to DOM
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tree. Separation of the logical and rendering levels facilitates easy change of
rendering when necessary, the logic and data flow are completely abstracted
from rendering technology.

Currently, we implement tree rendering using HTML 〈div〉 objects. In the
future, however, we may decide to take a different approach to web rendering
using standard non-propietary tools. One potential candidate is the new HTML
element 〈canvas〉 [15], and another one is Scalable Vector Graphics (SVG) [16].
However, neither 〈canvas〉 element, nor SVG, have become widely used standard
tools providing implementation-independent output yet3,4.

While implementation of adaptive tree visualization purely within HTML
using JavaScript allows manipulation of the tree on the client machine, and this
approach has obvious advantages, it also has a drawback: the implementation of
the tree using HTML elements does not allow saving the tree as an image and
quality of printing depends solely on the browser functionality. In the future,
we plan to provide an image for the tree: the selection made by the user within
the web tool will be transferred to the server and an image in one of standard
formats will be created and sent to the client.

Test Results. We applied developed methodology to typical influenza virus
sequence datasets. An aggregated tree obtained for dataset containing 380 HA
protein sequences for Influenza A H3N2 viruses extracted from human hosts dur-
ing 20-year period 1968-1998, is shown in Figure 3 (for comparison, see Figure 2
showing the same dataset with a traditional sequence-level resolution).

3 Discussion

Adaptive aggregative visualization of datasets with the possibility to refine and
coarse different parts of the representation interactively on the web is a promising
approach to a convenient preliminary analysis of large datasets. It allows the
user to view and manipulate the data hierarchically, doing each operation at the
appropriate resolution level. We implemented this approach for tree visualization
and demonstrated its efficiency and usefulness.

It is highly desirable to apply hierarchical visualization and adaptive resolu-
tion to other types of data representation. One of the immediate areas requiring
our attention is multiple sequence alignment visualization. While we provide a
convenient multiple alignment view in the current system (such as shown in
Figure 1), the user would not be able to comprehend data at sequence level for

3 New HTML5 element 〈canvas〉 is a part of the proposed HTML5 standard, but it is
not yet implemented as a native object in all browsers. Moreover, its current limited
implementation in selected browsers does not allow to include text [15].

4 SVG requires either a native implementation within a browser or a plug-in. Partial
native implementations are available in selected browsers [17]. Several plug-in im-
plementations are available. However, Adobe Systems, the provider of Adobe SVG
Viewer, stated that they will discontinue support for Adobe SVG Viewer by the end
of 2007 [18].

<div>
<canvas>
<canvas>
<canvas>
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large datasets consisting of hundreds or even thousands of sequences. A different
alignment representation, that allows to adjust the resolution and focus, seems
to be helpful.
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